Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140891, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101482

RESUMO

Exposure to benzo[a]pyrene (B[a]P), a major global food safety concern, is often associated with increasing incidence of colorectal cancers. This in-vitro study was focused on the identification of potential B[a]P-adsorbing Lactobacillus strains and evaluation of the ameliorative effect of synbiotic combination of selected Lactobacillus sp. and polyphenols (quercetin or resveratrol) against B[a]P-induced intestinal toxicity in Caco-2 cells. Preliminary studies lead to the selection of Lactiplantibacillus plantarum MTCC 25433 strain that showed 86% of B[a]P adsorption in 2 h as compared to L. rhamnosus GG that showed 74% of B[a]P adsorption. B[a]P adsorption by MTCC 25433 was reduced to 9%, 16% and 20% upon pre-treatment with SDS, NaIO4 and mutanolysin, attributing the involvement of cell wall proteins and polysaccharides in the adsorption. Additionally, peptidoglycan of both strains adsorbed >50% of B[a]P. In-vitro assays revealed that the selected LAB mitigated the B[a]P-induced epithelial cell damage. Among the polyphenols, quercetin, resveratrol and curcumin, varied in their potency to mitigate B[a]P-induced oxidative stress, with curcumin being least effective. Combinations of selected Lactobacillus sp. and polyphenols were more potent in averting B[a]P-induced toxicity via increase in GSH (17-30 %), SOD (50-88 %), catalase (19-45 %), and reduction in IL-8 secretion (14-28 %) and barrier dysfunction. Principal component analysis affirmed the superior potency of combination of L. plantarum MTCC 25433 and quercetin in averting B[a]P-induced toxicity. Overall, this study highlighted a novel promising strategy of synbiotic combination of Lactobacillus sp. and polyphenols (quercetin or resveratrol) in alleviating the B[a]P-induced toxicity in intestinal epithelial cells.


Assuntos
Curcumina , Simbióticos , Humanos , Polifenóis/farmacologia , Lactobacillus , Células CACO-2 , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Resveratrol/farmacologia , Quercetina/farmacologia
2.
Amino Acids ; 55(11): 1621-1640, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749439

RESUMO

The investigation was to determine the effect of camel milk fermented with Limosilactobacillus fermentum KGL4 (MTCC 25515) on ACE-inhibiting, anti-inflammatory, and diabetes-preventing properties and also to release the novel peptides with antidiabetic and anti-hypertensive attributes with molecular interaction studies. Growth conditions were optimised on the basis of total peptide production by inoculating the culture in camel milk at different rates (1.5, 2.0, and 2.5%) along with different incubation periods (12, 24, 36, and 48 h). However, after 48 h of fermentation with a 2.5% rate of inoculum, the highest proteolytic activity was obtained. Reverse phase high-pressure liquid chromatography (RP-HPLC) was used to calculate the % Rpa from permeates of 3 kDa and 10 kDa fractions. Molecular weight distributions of fermented and unfermented camel milk protein fractions were compared using SDS-PAGE. Spots obtained from 2D gel electrophoresis were separated on the basis of pH and molecular weight. Spots obtained from 2D gel were digested with trypsin, and the digested samples were subjected to RP-LC/MS for the generation of peptide sequences. The inhibition of tumour necrosis factor alpha, interleukin-6, and interleukin-1 during fermentation was studied using RAW 264.7 macrophages. In the study, fermented camel milk with KGL4 (CMKGL4) inhibited LPS-induced nitric oxide (NO) production and pro-inflammatory cytokine production (TNF-α, IL-6, and IL-1ß) by the murine macrophages. The results showed that the peptide structures (YLEELHRLNK and YLQELYPHSSLKVRPILK) exhibited considerable binding affinity against hPAM and hMGA during molecular interaction studies.


Assuntos
Anti-Hipertensivos , Camelus , Camundongos , Animais , Anti-Hipertensivos/farmacologia , Camelus/metabolismo , Hipoglicemiantes , Linhagem Celular , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fermentação
3.
Braz J Microbiol ; 54(3): 2073-2091, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612545

RESUMO

Lactobacillus and yeast obtained from fermented foods in North-East India were tested for safety and probiotic properties. All the lactobacilli and yeast tested negative for the catalase, indole, urease, phenylalanine, hemolysis, gelatin hydrolysis, and biogenic amine production tests, indicating that they are safe to use as probiotics in food supplements. Lactiplantibacillus plantarum KGL3A (accession no. MG722814) was capable of resisting the replicated gastric fluid (pH 2) till 2 h of exposure, whereas both KGL3A and Lacticaseibacillus rhamnosus K4E (accession no. KX950834.1) strains were able to resist pH 3 till 2 h of exposure with a reduction in overall viable cell count from 7.48 log CFU/mL to 1.09 log CFU/mL and 7.77 log CFU/mL to 0.83 log CFU/mL, respectively. In vitro gastric juice simulation conditions were tolerated by the yeast Saccharomyces cerevisiae WBS2A. The cell surface hydrophobicity (CSH) towards hydrocarbons (n-hexadecane) was seen highest in L. plantarum KGL3A (77.16± 0.84%) and Limosilactobacillus fermentum KGL4 accession no. MF951099 (72.60 ± 2.33%). The percentage auto-aggregation ranged from 8.70 to 25.53 after 2 h, which significantly increased to 10.50 to 26.94 during the fifth hour for cultures. Also, a higher percentage of co-aggregation was found for the culture L. rhamnosus K4E with S. typhi (34.18 ± 0.03%), E. coli (32.97 ± 0.02 %) and S. aureus (26.33 ± 0.06 %) and for the yeast S. cerevisiae WBS2A, a higher percentage of co-aggregation was found with Listeria monocytogenes (25.77 ± 0.22%). The antioxidant activity and proteolytic activity were found to be higher for Lactobacillus helveticus K14 and L. rhamnosus K4E. The proportion of decreased cholesterol was noticeably higher in KGL4 (29.65 ± 4.30%). ß glucosidase activity was significantly higher in the L. fermentum KGL4 strain (0.359 ± 0.002), and α galactosidase activity was significantly higher in the L. rhamnosus K4E strain (0.415 ± 0.016). MTT assays suggested that KGL4 and WBS2A at a lower dose did not exhibit cytotoxicity.


Assuntos
Alimentos Fermentados , Probióticos , Saccharomyces cerevisiae , Lactobacillus , Escherichia coli , Staphylococcus aureus , Anti-Inflamatórios
4.
Foods ; 12(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37238823

RESUMO

The investigation aimed at assessing a comparative study on the production and characterization of ACE inhibitory, anti-diabetic, and anti-inflammatory activities, along with the production of ACE inhibitory and anti-diabetic peptides through the fermentation of buffalo and camel milk by Limosilactobacillus fermentum (KGL4) and Saccharomyces cerevisiae (WBS2A). The angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic properties were evaluated at particular time intervals (12, 24, 36, and 48 h) at 37 °C, and we discovered maximum activity at 37 °C after 48 h of incubation. The maximum ACE inhibitory, lipase inhibitory activities, alpha-glucosidase inhibitory, and alpha-amylase inhibitory activities were found in the fermented camel milk (77.96 ± 2.61, 73.85 ± 1.19, 85.37 ± 2.15, and 70.86 ± 1.02), as compared to the fermented buffalo milk (FBM) (75.25 ± 1.72, 61.79 ± 2.14, 80.09 ± 0.51, and 67.29 ± 1.75). Proteolytic activity was measured with different inoculation rates (1.5%, 2.0%, and 2.5%) and incubation times (12, 24, 36, and 48 h) to optimize the growth conditions. Maximum proteolysis was found at a 2.5% inoculation rate and at a 48 h incubation period in both fermented buffalo (9.14 ± 0.06) and camel milk (9.10 ± 0.17). SDS-PAGE and 2D gel electrophoresis were conducted for protein purification. The camel and buffalo milk that had not been fermented revealed protein bands ranging from 10 to 100 kDa and 10 to 75 kDa, respectively, whereas all the fermented samples showed bands ranging from 10 to 75 kDa. There were no visible protein bands in the permeates on SDS-PAGE. When fermented buffalo and camel milk were electrophoresed in 2D gel, 15 and 20 protein spots were detected, respectively. The protein spots in the 2D gel electrophoresis ranged in size from 20 to 75 kDa. To distinguish between different peptide fractions, water-soluble extract (WSE) fractions of ultrafiltration (3 and 10 kDa retentate and permeate) of fermented camel and buffalo milk were employed in RP-HPLC (reversed-phase high-performance liquid chromatography). The impact of fermented buffalo and camel milk on inflammation induced by LPS (lipopolysaccharide) was also investigated in the RAW 264.7 cell line. Novel peptide sequences with ACE inhibitory and anti-diabetic properties were also analyzed on the anti-hypertensive database (AHTDB) and bioactive peptide (BIOPEP) database. We found the sequences SCQAQPTTMTR, EMPFPK, TTMPLW, HPHPHLSFMAIPPK, FFNDKIAK, ALPMHIR, IPAVFK, LDQWLCEK, and AVPYPQR from the fermented buffalo milk and the sequences TDVMPQWW, EKTFLLYSCPHR, SSHPYLEQLY, IDSGLYLGSNYITAIR, and FDEFLSQSCAPGSDPR from the fermented camel milk.

5.
J Am Nutr Assoc ; 42(6): 598-617, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36416542

RESUMO

OBJECTIVE: The goal of this research was to purify and characterize the novel angiotensin-converting enzyme (ACE)-inhibitory and antioxidant peptides from fermented whey protein concentrate produced by Lactobacillus paracasei and Saccharomyces cerevisiae in a co-fermentation system. METHOD: Whey protein fermented with lactic acid bacteria and yeast culture was analyzed for antioxidative, ACE inhibition, as well as anti-inflammatory activity followed by SDS-PAGE, isoelectric focusing, and 2-dimensional (2D) analysis. Anti-inflammatory activity of whey protein fermentate was also studied on the RAW 264.7 cell line. The bioactive peptides were separated from the whey protein fermentate using reverse-phase high-performance liquid chromatography (RP-HPLC) and reverse-phase liquid chromatography mass spectrometry (RPLC/MS), and thus identification and characterization of purified bioactive peptide was performed. RESULTS: Whey protein fermentate samples' bioactivity was analyzed at specific time intervals at 12, 24, 36, and 48 hours at 37 °C for M11 and at 25 °C for WBS2A. The development settings (incubation time [12, 24, 36, and 48 hours) and inoculation rates [1.5%, 2.0%, and 2.5%]) were optimized for peptide synthesis via the o-phthaldialdehyde (OPA) method (proteolytic activity). Maximum proteolytic activity was observed at 37 °C for M11 (6.50 mg/mL) and at 25 °C for WBS2A (8.59 mg/mL) for 48 hours of incubation. Protein profiling was carried out using SDS-PAGE and 2D gel electrophoresis, in which Sodium dodecyl-sulfate (SDS) exhibited protein bands in the 10- to 55-kDa range, while 2D showed protein bands varying from 10 to 70 kDa. Every spot from 2D was digested by trypsin and identified by RPLC/MS. Protein fractionations (3- and 10-kDa permeates) were carried out employing RP-HPLC. Whey protein fermentate has anti-inflammatory action in RAW 264.7 macrophages that have been exposed to lipopolysaccharide. A molecular docking system was also used to investigate the interactions of peptides (AFLDSRTR, ILGAFIQIITFR) with human myeloperoxidase enzyme. CONCLUSIONS: The antihypertensive and antioxidative peptides discovered from whey protein fermentate may be helpful in the design of pharmacologically active healthy ingredients in the upcoming years.


Assuntos
Anti-Hipertensivos , Antioxidantes , Humanos , Anti-Hipertensivos/farmacologia , Proteínas do Soro do Leite/farmacologia , Antioxidantes/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Simulação de Acoplamento Molecular , Peptídeos/farmacologia
6.
Braz J Microbiol ; 54(1): 293-309, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36401067

RESUMO

Probiotics are known to stimulate, modulate, and regulate host immune response by regulating specific sets of genes and improve glucose homeostasis through regulating dipeptidyl peptidase (DPP-IV) activity, but the mechanism behind their protective role is not clearly understood. Therefore, the present study was designed to isolate indigenous lactic acid bacterial (LAB) strains from different fermented food samples, vegetables, and human infant feces exhibiting anti-inflammatory, antioxidant, and DPP-IV inhibitory activity. A total of thirty-six Gram-positive, catalase-negative, and rod-shaped bacteria were isolated and screened for their anti-inflammatory activity using lipopolysaccharide (LPS)-induced inflammation on the murine (RAW264.7) macrophages. Among all, sixteen strains exhibited more than 90% reduction in nitric oxide (NO) production by the LPS-treated RAW264.7 cells. Prioritized strains were characterized for their probiotic attributes as per the DBT-ICMR guidelines and showed desirable probiotic attributes in a species and strain-dependent manner. Accordingly, Lacticaseibacillus rhamnosus LAB3, Levilactobacillus brevis LAB20, Lactiplantibacillus plantarum LAB31, Pediococcus acidilactici LAB8, and Lactiplantibacillus plantarum LAB39 were prioritized. Furthermore, these strains when co-supplemented with LPS and treated on RAW264.7 cells inhibited the mitogen-activated protein kinases (MAPKs), i.e., p38 MAPK, ERK1/2, and SAPK/JNK, cyclooxygenase-2 (COX-2), relative to the LPS-alone-treated macrophages. LAB31 and LAB39 also showed 64 and 95% of DPP-IV inhibitory activity relative to the Lacticaseibacillus rhamnosus GG ATCC 53103, which was used as a reference strain in all the studies. Five prioritized strains ameliorated the LPS-induced inflammation by downregulating the JNK/MAPK pathway and could be employed as an alternative bio-therapeutic strategy in mitigating gut-associated inflammatory conditions. The potential mechanism of action of prioritized LAB strains in preventing the LPS-induced inflammation in RAW 264.7 macrophage cells.


Assuntos
Lactobacillales , Humanos , Animais , Camundongos , Lactobacillales/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Dipeptidil Peptidases e Tripeptidil Peptidases/uso terapêutico , Ácido Láctico , Óxido Nítrico
7.
J Am Nutr Assoc ; 42(4): 371-385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35584265

RESUMO

OBJECTIVE: The aim of the study was to evaluate the whey protein hydrolysate with bio-functional attributes viz. antioxidative, anti-inflammatory and ACE inhibition efficacy and release of bioactive peptides with antioxidative and ACE-inhibitory activity by employing Pepsin. METHOD: The antioxidant, Anti-inflammatory, ACE inhibitory and proteolytic activities of the whey protein hydrolysates were studied followed by SDS-PAGE analysis and IEF. Anti-inflammatory activity of whey protein hydrolysate was also studied on RAW 264.7 cell line. The separation of the bioactive peptides from whey protein hydrolysate was achieved by RP-HPLC. The purified bioactive peptides were identified and characterized using RPLC/MS. RESULTS: WPC (Whey protein concentrate) hydrolysate with pepsin showed proteolytic activity ranging between 14.46 and 18.87 mg/ml. Using the ABTS assay, the highest antioxidative activity was observed in 10 kDa retentate (84.50%) and 3 kDa retentate (85.96%), followed by the highest proteolytic activity (13.83 mg/ml) and ACE inhibitory activity (58.37%) in a 5% WPC solution at 65 °C after 8 h of pepsin hydrolysis. When the protein hydrolysate concentration was low, the production of proinflammatory cytokines by lipopolysaccharide-treated murine macrophages (RAW 264.7) was reduced. SDS-PAGE results exhibited very little protein bands when comparing with WPC hydrolysates to insoluble WPC. There were no protein spots on 2 D gel electrophoresis and "in-solution trypsin digestion" technique have been utilized to digest protein samples directly from WPC hydrolysates. Novel antioxidative peptides and ACE inhibitory peptides were also observed by comparing two databases, i.e., BIOPEP and AHTPDB respectively. The peptide sequences used in this study were found to have excellent potential to be used as inhibitors of hACE as all of them were able to show substantial interactions against the enzyme's active site. CONCLUSIONS: The antihypertensive and antioxidative peptides from whey protein hydrolysates may be beneficial for the future development of physiologically active functional foods. Further, in vivo investigations are required to establish the health claim for each individual bioactive peptide from whey protein hydrolysate.Supplemental data for this article is available online at.


Assuntos
Anti-Hipertensivos , Hidrolisados de Proteína , Animais , Camundongos , Anti-Hipertensivos/farmacologia , Hidrolisados de Proteína/farmacologia , Antioxidantes/farmacologia , Pepsina A/metabolismo , Soro do Leite/metabolismo , Peptídeos/farmacologia
8.
J Am Nutr Assoc ; 42(1): 75-84, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605750

RESUMO

OBJECTIVE: The present study aimed to assess the bio-functional analysis of camel milk viz. anti-oxidative, anti-inflammatory activities using potent Lactobacillus fermentum (KGL4) strain through fermentation and also to release the bioactive peptides during fermentation. METHOD: The antioxidant and proteolytic activities of the fermented camel milk were studied followed by SDS-PAGE analysis and 2 D PAGE. The separations of the bioactive peptides of water-soluble extract (WSE) of 3 and 10 kDa (Permeates & Retentates) were achieved by RP-HPLC. The purified bioactive peptides were identified and characterized using RPLC/MS and the effect of WSE of camel milk fermented with KGL4 on lipopolysaccharide (LPS)/endotoxin-induced inflammation in RAW 264.7 macrophages were also studied. RESULTS: The maximal activity was observed in ABTS assay (64.03%), then in hydroxyl free radical scavenging assay, and minimal activity was observed in superoxide free radical assay (57.75%). ABTS assay was significantly (P < 0.05) higher than other assays. MTT assay was performed on WSE of camel milk fermented with KGL4 using treated macrophage cells with different concentrations and found the decreasing range of cell viability at 0.25 mg/mL treatment which was non-significant. 7.80 mg/ml peptide production was found after 48 h of fermentation using the OPA method. Further, WSE of fermented camel milk was separated and analyzed their protein profiles using SDS-PAGE and 2 D-PAGE techniques. Here, many new peptides were found in camel milk when fermented with KGL4 strain. Each protein sequence was characterized through bioinformatic tools, including SWISS-PROT & PIR protein databases. Novel bioactive anti-oxidative peptides were found by searching in the BIOPEP database. CONCLUSIONS: The present study suggests that the L. fermentum KGL4 strain could be explored to produce novel antioxidative peptides from fermented camel milk (Indian breed).


Assuntos
Limosilactobacillus fermentum , Leite , Animais , Leite/química , Camelus/metabolismo , Antioxidantes/farmacologia , Ultrafiltração , Peptídeos/farmacologia , Anti-Inflamatórios/farmacologia
9.
J Food Biochem ; 46(12): e14449, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36206543

RESUMO

The goal of this investigation was to find antidiabetic peptides and inhibit angiotensin converting enzyme (ACE) in Lacticaseibacillus paracasei (M11) fermented dromedary camel milk (Camelus dromedaries). According to the findings, the rate of antidiabetic activity increased along with the incubation periods and reached its peak after 48 hr of fermentation. The inhibitions of α-amylase, α-glucosidase, and lipase were 80.75, 59.62, and 65.46%, respectively. The inhibitory activity of ACE was 78.33%, and the proteolytic activity was 8.90 mg/mL. M11 at 0.25 mg/mL effectively suppressed LPS-induced pro-inflammatory cytokines and their mediators such as NO, TNF-α, IL-6, and IL-1ß in RAW 264.7 cells. The rate of inoculum in the optimization phase was 1.5-2.5%, and the greatest proteolytic activity was observed after 48 hr of fermentation. The investigation of the above property in the ultrafiltered fermented milk exhibited the highest antidiabetic and ACE inhibition activities in the 3 kDa than 10 kDa fractions. The molecular weight was determined employing SDS-PAGE, and the six-peptide sequences were identified using 2D gel electrophoresis. Due to its high proteolytic activity, the L. paracasei strain has been reported to be useful in the production of ACE-inhibitory and antidiabetic peptides. Amino acid sequences such from ɑ1, ɑ2, and ß-caseins have been identified within fermented camel milk by searching on online databases, including BIOPEP (for antidiabetic peptides) and AHTPDB (for hypertension peptides) to validate the antidiabetic and ACE-inhibitory actions of several peptides. PRACTICAL APPLICATIONS: The study aims to identify antidiabetic peptides and inhibit ACE in dromedary camel milk fermented with Lacticaseibacillus paracasei M11. Maximum antidiabetic and ACE-inhibitory actions of the fermented camel milk were observed in 3 kDa permeate fractions. Fermented camel milk significantly reduced the excessive TNF-α, IL-6, and IL-1ß production in LPS-activated RAW 264.7 cells. RP-LC/MS was used to identify 6 bioactive peptides from dromedary fermented camel milk. This fermented camel milk could be used for the management of hypertension and diabetic related problems.


Assuntos
Anti-Hipertensivos , Hipertensão , Animais , Leite/química , Camelus/metabolismo , Lacticaseibacillus , Peptidil Dipeptidase A , Hipoglicemiantes/farmacologia , Hipoglicemiantes/análise , Fator de Necrose Tumoral alfa/genética , Interleucina-6 , Lipopolissacarídeos , Peptídeos/química
10.
J Ethnopharmacol ; 297: 115539, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35843412

RESUMO

ETHNO-PHARMACOLOGICAL RELEVANCE: Gymnosporia montana (Roth) Benth an herbaceous shrub used in Indian traditional medicine their leaves decoction was used as mouthwash to get relieve from toothache, hence it is also known as Dantakashta in Sanskrit language which means the plant used for tooth problems. Traditionally the leaves juice used to alleviate inflammation and in some parts of India like Saurashtra in Gujarat, leaves were chewed as a folklore cure for Jaundice and in Bhandra region Karnataka, leaves extract mixed with cow milk used for jaundice. Hepatoprotective activity for G. montana leaves was well reported however, its use for inflammation and toothache are still not studied to investigate active phytoconstituents responsible for anti-inflammatory activity. AIM OF THE STUDY: The present study aimed at bioactivity guided isolation of G. montana leaves extracts using inhibition of pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor (TNF-α), and interleukins (IL-1ß and IL-6) in RAW 264.7 cells in vitro assay to yield bioactive phytoconstituents. MATERIALS AND METHODS: The n-hexane, ethyl acetate and methanol extracts prepared from G. montana leaves were evaluated for cell viability using MTT assay. The effect of extracts to inhibit the pro-inflammatory mediators like NO, TNF-α, IL-1ß and IL-6 in RAW 264.7 macrophages was measured by enzyme-linked immunosorbent assay (ELISA). The quantitative analysis of the isolated phytoconstituents was performed using quantitative Nuclear Magnetic Resonance (qNMR). RESULTS: The n-hexane, ethyl acetate, and methanol extracts of G. montana leaves exhibited cell viability in the range of 97.43-84.88% at 50 µg/mL concentration in RAW 264.7 macrophages. In-vitro evaluation of extracts showed that n-hexane extract was most effective in inhibiting NO, TNF-α, IL-1ß and IL-6 inflammatory mediators at 50 µg/mL in lipopolysaccharides (LPS) stimulated RAW 264.7 cells. Further n-hexane extract, its fraction GMHA3 and ß-amyrin exhibited significant anti-inflammatory activity at 100, 50 and 30 mg/kg per oral, respectively in carrageenan-induced rat paw edema. The quantitative analysis by qNMR revealed ß-amyrin as a major compound in the n-hexane extract. CONCLUSIONS: In vitro and in vivo bioassay results suggested that G. montana n-hexane extract, its fraction GMHA3 and ß-amyrin exhibits significant anti-inflammatory activity proves the traditional uses of G. montana leaves. The reported activity of ß-amyrin for periodontitis provides evidence of profound the use of G. montana leaves for toothache and anti-inflammatory activity.


Assuntos
Interleucina-6 , Fator de Necrose Tumoral alfa , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Bovinos , Edema/tratamento farmacológico , Feminino , Índia , Inflamação/tratamento farmacológico , Mediadores da Inflamação , Lipopolissacarídeos , Metanol/uso terapêutico , Montana , Óxido Nítrico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Odontalgia
11.
J Food Sci Technol ; 59(7): 2629-2642, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35734133

RESUMO

The study aimed to investigate potent antioxidant activities (ABTS assay, Hydroxyl free radical scavenging assay, and Superoxide free radical assay), ACE inhibitory activity, and anti-inflammatory activity in the WPC (whey protein concentrate) hydrolysate using Alcalase. The hydrolysis conditions (addition rate and incubation times) for peptide synthesis were also optimized using proteolytic activity. The generation of proinflammatory cytokines by lipopolysaccharide-treated murine macrophages was reduced when the protein hydrolysate concentration was low. In comparison to unhydrolyzed WPC, SDS-PAGE examination revealed no protein bands in WPC hydrolysates. Two-Dimensional (2D) gel electrophoresis did not show any protein spots. Using the 'In-solution trypsin digestion' approach, the trypsin digested protein samples were put into RPLC/MS for amino acid sequencing. Peptides were also identified using RPLC/MS on fractions of 3 and 10 kDa permeates and retentates. The MASCOT database was used to look up the raw masses of LC/MS. By comparing hydrolyzed whey protein to the BLASTp (NCBI), PIR, BIOPEP, and AHTPDB databases, novel antioxidative and ACE inhibitory peptides were reported. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-021-05282-3.

12.
3 Biotech ; 12(4): 89, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35299989

RESUMO

This study was carried out to understand the probiotic features, ability to utilize non-digestible carbohydrates and comparative genomics of anti-inflammatory Bifidobacterium strains isolated from human infant stool samples. Bacterial strains were isolated from the stool samples using serial dilution on MRS agar plates supplemented with 0.05% l-cysteine hydrochloride and mupirocin. Molecular characterization of the strains was carried out by 16S rRNA gene sequencing. Anti-inflammatory activity was determined using TNF-α and lipopolysaccharide (LPS) induced inflammation in Caco2 cells. Probiotic attributes were determined as per the established protocols. Isomaltooligosaccharides (IMOS) utilization was determined in the broth cultures. Whole genome sequencing and analysis was carried out for three strains. Four obligate anaerobic, Gram positive Bifidobacterium strains were isolated from the infant stool samples. Strains were identified as Bifidobacterium longum Bif10, B. breve Bif11, B. longum Bif12 and B. longum Bif16. The strains were able to prevent inflammation in the Caco2 cells through lowering of IL8 production that was caused by TNF-α and LPS treatment. The strains exhibited desirable probiotic attributes such as acid and bile tolerance, mucin binding, antimicrobial activity, bile salt hydrolase activity, cholesterol lowering ability and could ferment non-digestible carbohydrates such as isomaltooligosaccharides and raffinose. Furthermore, Isomaltooligosaccharides supported the optimum growth of the strains in vitro, which was comparable to that on glucose. Strains could metabolize IMOS through cell associated α-glucosidase activity. Genomic features revealed the presence of genes responsible for the utilization of IMOS and for the probiotic attributes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03141-2.

13.
Food Funct ; 11(11): 9833-9847, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33089852

RESUMO

Finger millet (FM) and kodo millet (KM) are known for their multiple health benefits. Several studies have indicated the antioxidant and hypoglycemic potential of polyphenol rich extracts (PREs) from them. However, the protective roles of PREs from these millets in overcoming high-fat diet (HFD)-induced obesity have not yet been investigated. This study aimed to identify the polyphenols in FM-PREs and KM-PREs using HPLC-DAD/ESI-MS, and to evaluate the role of PREs in mitigating lipopolysaccharide induced inflammation in murine macrophage cells and in the reduction of HFD-induced metabolic complications using male Swiss albino mice. The results suggested that KM-PRE had higher polyphenol content than FM-PRE, of which taxifolin (98%) and catechin (86.6%) were the major fractions respectively. FM-PRE and KM-PRE prevented obesity, however, KM-PRE was more profound in preventing weight gain, adipose tissue hypertrophy, hepatic steatosis, and systemic inflammation than FM-PRE. This study suggests that FM-PRE and KM-PRE could be exploited for developing functional foods or nutraceuticals against obesity and comorbidities.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Milhetes , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Animais , Dieta Hiperlipídica , Dislipidemias/prevenção & controle , Alimento Funcional , Masculino , Camundongos
14.
Reprod Sci ; 24(5): 738-752, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27662902

RESUMO

The function of RHOG, a RAC1 activator, was explored in the ovary during ovarian follicular development and pathological conditions. With the help of immunoblotting and immunolocalization, we determined the expression and localization of RHOG in normal (estrous cycle) and polycystic ovaries using Sprague Dawley (SD) rat model. Employing polymerase chain reaction and flow cytometry, we analyzed the transcript and expression levels of downstream molecules of RHOG, DOCK1, and RAC1 in the polycystic ovarian syndrome (PCOS) ovary along with normal antral follicular theca and granulosa cells after dehydroepiandrosterone (DHEA) supplementation. The effect of RHOG knockdown on DOCK1, VAV, and RAC1 expression was evaluated in the human ovarian cells (SKOV3), theca cells, and granulosa cells from SD rats with the help of flow cytometry. Oocyte at secondary follicles along with stromal cells showed optimal expression of RHOG. Immunoblotting of RHOG revealed its maximum expression at diestrus and proestrus, which was downregulated at estrus stage. Mild immunostaining of RHOG was also present in the theca and granulosa cells of the secondary and antral follicles. Polycystic ovary exhibited weak immunostaining for RHOG and that was corroborated by immunoblotting-based investigations. RHOG effectors DOCK1 and ELMO1 were found reduced in the ovary in PCOS condition/DHEA. RHOG silencing reduced the expression of DOCK1 and RAC1 in the theca and granulosa cells from SD rat antral follicles and that was mirrored in the human ovarian cells. Collectively, RHOG can mediate signaling through downstream effectors DOCK1 and RAC1 during ovarian follicular development (theca and granulosa cells and oocyte), but DHEA downregulated them in the PCOS ovary.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Folículo Ovariano/metabolismo , Síndrome do Ovário Policístico/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Desidroepiandrosterona , Modelos Animais de Doenças , Ciclo Estral , Feminino , Humanos , Folículo Ovariano/patologia , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/patologia , Puberdade , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...